
-A1S8 613 NIJLTIRPC: A PARALLEL REMOTE PROCEDURE CALL MECHNIISMI 1
Ira (U) CARNEGIE'-MELLON UNIV PITTSURGH4 PA DEPT OF COMPUTER

I SCIENCE. N SATYAUARAYANAN ET AL DEC 87
UNCLASSIFIED C UCS 7 i36 AAFMAL-TR-87-117 F/12/7 L,

IQ6

SR(XC)PY RLSOUTO TEST IP

PHOTOGRAPH THIS SHEET

LEVEL INVENTORY

.hJ 00
c__ z

z

I DOCUMENT IDENTIFICATION

IL.,
TIMMi demmtk b om ops

DISTRIBUTION STATEMENT

[-(I SSION I OR
N TIs G;RA&I

D* 1)k AB

I.""" "% D DTIC
_ _ __NN NN'F.1, il KA,,.ION Elh A ELECTEII

____________FEB 0 91988

X%\ %IL Urfi|}IlTY CODFS
AVAIL AND/OR SPECIAL

DATE ACCESSIONED

I)iSTRIBUT:ON STAMP /

DATE RETURNED

88 2 05 097
DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND REfURN TO DTIC-DDAC

DTlC FORM 70A DOCUMENT PROCESSING SHEET PREVIOUS EDITION MAY BE USED UNT
DEC 83 STOCK IS EXHAUSTED.

AFWAL-TR-87- 1171

(0 MultiRPC: A PARALLEL REMOTE PROCEDURE CALL MECHANISM

00
M. Satyanarayanan

W E.H. Siegel

Computer Science Department

0 Pittsburgh, PA 15213-3890

December 1987

Interim

Approved for Public Release; Distribution is Unlimited

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection witb a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHAHIRA M. HOPPER RICHA.RD C. JONES.

Project Enaineer Ch, Advanced Systems Research Gp

Information Processing Technology Br

FOR THE COMMANDER

EDWARD L. GLIATTI
Ch, Information Processing Technology Br

Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security corsiderations, contractual obligations, or notice on a specific
document.

4l

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

I Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Ia REPORT SECURITY CLASSIFICATiON lb RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION DOWNGRADING SCHEDULE is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU-CS-87-136-A AFWAL-TR-87- 1171

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
C e (If applicable) Air Force Wright Aeronautical Laboratories
Carnegie-Mellon University AFWAL/AAAT-3

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Computer Science Dept Wright-Patterson AFB OH 45433-6543

Pittsburgh PA 15213-3890

Ba NAME OF FUNDING ' SPONSORING IBb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONJ (If applicable) F33615-84-K-1520

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO.

61101E 4976 00 01

11. TITLE (Include Security Classification)
MultiRPC: A Parallel Remote Procedure Call Mechanism

12. PERSONAL AUTHOR(S)
M. Satyanarayanan; E. H. Siegel

13a. TYPE OF REPORTrim 3b T M E COVEREDTO 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

!6. SUPPLEMENTARY NOTA TION

This is a revised version of report CMU-CS-86-139.

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

MuItiRPC is an invocation mechanism that enables a client to access multiple servers in a single remote
procedure call. Parallelism is obtained irom concurrency of processing on servers and from the
overlapping of retransmissions and timeouts. Each of the parallel calls retains the semantics and
functionality of the underlying remote procedure call mechanism. These include secure, authenticated
communication and the use of aplication-specific side effects. The underlying communication medium
does not have to support multicast of broadcast transmission. In this paper we describe the design and
evolution of MultiRPO, focusing on the issues of runtime efficiency, versatility, and ease of use. We derive
an analytic model of the system and present experimental results that validate this model. We also
present our observations on using MultiRPC to contact up to 100 servers in parallel.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
13 UNCLASSIFIEDUNLIMITED [SAME AS RPT [:3 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22bT LEPTMQjMrir'kjg Area Code) 22jfFICEYMBOfJ
Chahira M. Hopper (513) Z1-tb FWL A-

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

Table of Contents
1. Introduction 1
2. Overview of RPC2 1
3. Motivation3
4. Design Considerations 4
5. Design and lmplemactitation 4

5.1. Overall Structure 4
5.2. Handling Failures 5
5.3. Evolution 6

6. Performnance 7
6.1. Analytic Model 8
6.2. Experimental Results 10

6.2.1. Experimental Environment 10
6.2.2. Validation 11
6.2.3. Large Scale Effects 11

7. Related Work 12
8. Conclusion 13
Acknowlcdgemnents 13
I. An Example 14
II. Network'Topology 19
II. Tahles 20

IV. Graphs 25

V

1. Introduction
RPC2 is a remote procedure call mechanism that has been used extensively in the Andrew distributed
computing environment at Carnegie Mellon University (121. A detailed description of RPC2 may be found
elsewhere [16, 151. MuhtiRPC is an extension to RPC2 that enables a client to perform remotc invocations of
multiple servers while retaining the reliability characteristics of remote procedure calls. In this paper we
describe MuItiRPC and show how we have made it fast, versatile and simple to use.

Section 2 presents an overview of RPC2. Section 3 explains why we extended RPC2 with a parallel
invocation mechanism. The considerations that influenced the design of MultiRPC are put forth in Section 4.
Section 5 describes the design and'implementation of MultiRPC, explores some of the subtle consequences of
our original design decisions, and motivates the resulting modifications. Section 6 discusses the experimental
evaluation of the system. An analytic model is derived, and validated by comparing its predictions to the
results of controlled experiments. Sections 7 relates this work to other efforts relating to parallelism in
network communication. Section 8 concludes the paper with an overview of work in progress.

2. Overview of RPC2
RPC2 consists of two relatively independent components: a Unix-based runtime library written in C, and a
stub generator. RP2Gen. The runtime system is self-contained and is usable in the absence of RP2Gen. The
code in the stubs generated by RP2Gen is, however, specific to RPC2.

A subsystem is a set of related remote procedure calls that make up a remote interface. RP2Gen takes a
description of a subsystem and automatically generates code to marshall and unmarshall parameters in the
client and serer stubs. It thus performs a function similar to Lupine in the Xerox RPC mechanism [1] ,ind
Matchmaker in Accent LPC [10).

The RPC2 runtime system is fully integrated with a Lightweight Process mechanism (L WP) [131 that supports
multiple nonpreemptive threads of control within a single Unix process. When a remote procedure is
invoked, the calling LWP is suspended until the call is complete. Other LWPs in the same Unix process are,
however, still runnable. The I.WP package allows independent threads of control to share virtual memory, a
feature that is not present in standard Unix. Both RPC2 and the LWP package are entirely outside the Unix
kernel and have been ported to multiple machine types.

The low-level packet 1 transport mechanism is a separable component of RPC2. The only primitives required
of it are the ability to send and receive datagrams. At present. RPC2 runs on the DARPA IP/UDP
protocol [6, 71.

RPC2 is based on logical connections. The rationale for choosing a connection-based rather than
connectionlcss protocol is presented in the design document [161. For the purposes of this paper the following
facts about RPC2 connections are relevant:

1. A connection is created when a client invokes the BIND primitive and is destroyed by the UNBIND
primitive. The cost of a BIND is comparable to the cost of a normal RPC

2. One can view BIND as a special RPC that is common to all subsystems. In fact. a server is notified
of the creation of a new connection in exactly the same way it is notified of an RPC on an existing
connection.

Ltroughout this paper we use the term "packet" to mean a logical packct. In some networks a packet may be physically trasmitted as
multple fragments. Such fragmentation is tnnsparent to RPC2.

=L
_

2

3. Connections use little storage. Typically a connection requires a hundred bytes at each of the
client and server ends. No other resources are used by a connection.

4. Within each Unix process. an RPC2 connection is identified by a unique handle. Handles are
never reused during the life ot a process.

5. At any given time a Unix process can have at most 64K active connections. This is about two
orders of magnitude larger than the number of connections in use in the most heavily loaded
Andrew servers.

Although one speaks of "clients" and "servers", it should be noted that the mechanism is completely
symmetric. A server can be a client to many other servers, and a client may be the server to many other
clients. On a given connection, however, the roles of the peers are fixed.

Besides BIND and UNBIND, the most important runtime primitive on the client side is MAKERPC. This call
sends a request packet to a server and then waits for a reply. Reliable delivery is guaranteed by a
retransmission protocol built on top of the datagram transport mechanism. Calls may take an arbitrary length
of time; in response to client retries the server sends keep-alivc packets (BUSY packets) to indicate that it is
still alive and connected to the network. On the server side, the basic primitives are GETREQUEST, which
blocks until a request is received and SENDRESPONSE, which sends out a reply packet. RPC2 provides
exactly-once semantics in the absence of site and hard network failures, and at-most-once semantics
otherwise [171.

A unique aspect of RPC2 is its support of arbitrary side effects on RPC calls. The side effect mechanism
allows application-specific protocols to be integrated with the base RPC2 code. Side effects and a number of
other RPC2 features are discussed in the design document. Tables 2-t, 2-2, and 2-3 summarise the RPC2
primitives relevant to this paper.

{ Prmitve jDescription
HaN" Create a new connection
MAICERPC Make a remote procedure call
MAULTIRPC Make a collection of remote procedure calls

Table 2-1: Client Primitives

Primidye Description

EXPORT Indicate willingness to accept calls for a subsystem
DEXWORT Stop accepting new connections for one or all subsystems
GErT QtE1T Wait ror an RPC request or a new connection
ENAM Allow servicng of requests on a new connection
SSENFDRtESPONS Respond to a request from a client
INt.TIDFMT Initiate side effect

cH 73mDW Cr Check progress of side effect

Table 2-2: Server Primitives

3

Primitive Description

INrT Perform runtime hystem initialisation
UNBIND Terminate a conn.-cion by client or server
ALLOCBuFFER Allocate a packet buffer
FRE ILFFER Free a packet buffer

Table 2-3: Miscellaneous Primitives

3. Motivation
[he principles underlying MultiRPC arose as a solution to a specific problem in Andrew. In the Andrew file
system [14], workstations fetch files from servers and cache them on their local disks. In order to maintain the
consistency of the caches, servers maintain callback state about the files cached by workstations. A callback
on a file is essentially a commitment by a server to a workstation that it will notify the latter of any change to
the file. This guarantee maintains consistency while allowing workstations to use cached data without
contacting the server on each access. Before a file may be modified on the server, every workstation that has a
callback on the file must be notified. Since the system is ultimately expected to encompass over 5000
workstations, an update to a popular file may involve a callback RPC to hundreds or thousands of
workstations. The problem is exacerbated by the fact that a callback RPC to a dead or unreachable
workstation must time out before the connection is declared broken and the next workstation tried. Each
such workstation would cause a delay of many seconds, rather than the few tens of milliseconds tytical of
RPC roundtrip times for simple requests. Given these observations, we felt that the potential delay in
•pdating widely-cached files would be unacceptable if we were restricted to using simple RPC calls
iteratively.

A simple broadcast of callback information is not feasible. With broadcast, every time a file is changed
anywhere in the system every workstation would have to process a callback packet and detcrmine if the packet
were relevant to that workstation. Using multicast to narrow the set of workstations contacted is also
impractical, because each file would then potentially have to correspond to a distinct multicast address. Since
workstations flush and replace cache entries frequently, the membership of multicast groups would be highly
dynamic and difficult to maintain in a consistent manner.

Besides these considerations, the use of broadcast or multicast does not provide servers with confirmation that
individual workstations have indeed received the callback information. Such confirmation is implicit in the
reliable delivery semantics of RPC. It became clear to us that we needed a mechanism that retained strict
RPC semantics while overlapping the computation and communication overheads at each of the destinations.
This is the essence of MultiRPC.

MultiRPC has applications in other contexts too. Replication algorithms such as quorum consensus [9]
require multiple network sites to be contacted in order to perform an operation. The request to each site is
usually the same, although the returned information may be different. MultiRPC could be used to
considerably enhance the performance of such algorithms. The performance of some relatively simple but
frequent operations in large distributed systems may also be improved by MultiRPC. Consider, for example,
the contacting of a name or time server. If more than one such server is available, it may be reasonable to use
MultiRPC to contact many of them, wait for the earliest reply and abandon all further replies.

4

4. Design Considerations
The primary consideration in the design of MultiRPC was that it be inexpensive. We did not want normal
RPC calls to be slowed down because of MultiRPC. Although one-to-many RPC calls constituted a very
important special case, we expected simple, one-to-one RPC calls to be preponderant. A related, but distinct,

Vconcern was the increase in program size resulting from MultiRPC. Since virtual memory usage in our
workstations was already high, we wished to keep MultiRPC small.

Another influence on our design was the desire to decouple the design of subsystems from considerations
relating to MultiRPC. We did not want to require any changes to clients who used only RPC2, or to servers.
Our view was that only clients who wished to access multiple sites in parallel should have to know about

lMuhiRPC.

Since we insisted on allowing simple RPC and MultiRPC calls in any order on any combination of
connections, MultiRPC had to be completely orthogonal to normal RPC2 features. The delivery semantics,
failure detection, support for multiple security levels and the ability to use side effects all had to be retained
when making a MultiRPC call.

J..

A number of the scenarios in which we envisaged MultiRPC being used required replies to be processed by
the client as they arrived rather than being batched. Since the exact nature of such processing was application
dependent it had to be performed by a client-specified procedure. In addition, we felt that it was important
for a client to be able to abort the MultiRPC call either after examining any reply or after a specified amount
of time had elapsed since the start of the MultiRPC call.

Finally, we wanted MultiRPC to be simple to use. We have been successful in this even though the syntax of
a MultiRPC call is different from the syntax of a simple RPC call, the latter being similar to a local procedure
call. We have had to violate this syntax for two reasons: to allow clients to specify an arbitrary reply-handling
procedure in a MultiRPC call, and to avoid expanding code size by generating a MultiRPC stub for every call
in a subsystem.

5. Design and Implementation
In this section we first present the design of MultiRPC. We discuss certain reliability and performance
problems revealed by a prototype implementation and then describe the refinements made to alleviate these
deficiencies.

5.1. Overall Structure
Support for MultiRPC is present at both the runtime level and the language level, reflecting the organisation
of RPC2. The runtime interface can be used independent of the language interface, but not vice versa.

Runtime support is provided by the routine MULTIRPC that takes a request packet, a list of connections and a
client handler routine as input, and blocks until all responses have been received or until the call is explicitly
terminated by the client handler. The packet which is transmitted to a server is identical to a packet generated
by an RPC2 call. A server is not even aware that it is participating in a MultiRPC call.

MultiRPC provides the same correctness guarantees as RPC2, except when the client terminates a call
prematurely. In this case, a success return code indicates that no connection failures were detected prior to
the point of termination. However, undetected server failures may have occurred after termination.

.4/

5

Language support for MultiRPC is provided by the routines MAKE.MUI 11 and UNPACKMUL1 . These routines
interpret templates called argument descriptor stnictures (ARGs) generated by RP2Gen to perform the
packing and unpacking of paramicters in request and reply packets. The decision to interpret ARGs at
runtime rather than to use precompiled stubs as in RPC2 was motivated by storage size considertions. The
slight additional processing cost of parameter interpretation is outweighed by the savings in the code size. A
consequence of this is that the syntax of a MultiRPC call no longer resembles invocation of a local procedure.
Each component of a MultiRPC call does, however, retain the scir.antics of an equivalent RPC2 call.

Appendix I describes the external interface of MultiRPC using an example. It presents a simple RPC2
subsystem in Figure I-1 and shows typical client and server code written by a user for non-MultiRPC calls in
Figurcs 1-3 and 1-4. RP2Gen uses the subsystem definition to generate a header file (Figure 1-2) as well as
client and server stub files (not shown).

Figure I-5 shows how the user has to modify the client code to use MultiRPC. There are only two significant
changes: the direct call to the client stub has to be replaced by an indirect call via MAKEMULTI, and a client
handler routine has to be provided to process replies.

The ARGs used by MAKEMULTI are defined by RP2Gen in the header file. Each routine in a subsystem has
an associated array of ARGs, with the type, usage and size of each parameter being specified by one array
element. Structures are described by an array of ARGs, one ARG per field. Nested structures are described
by correspondingly nested ARGs. At runtime, MAKEMULTI traverses the ARG array and actual parameter list
in step.

The client handler is activated exactly once for each connection specified in the MultiRPC call. Each
activation corresponds to the receipt of a reply or to detection of a permanent failure on that connection. The
handler enables these events to be processed as soon as they occur. Its return code indicates whether the
MultiRPC call should be continued or terminated.

The internal routine SENDPACKETSRELIABLY is the heart of the MultiRPC retransmission, failure detection
and result gathering mechanism. It performs an initial transmission of requests on all relevant connections
and then awaits replies or timeouts. Each timeout on a connection causes a retransmission of the request to
the corresponding server. On a reply, appropriate side effect processing is performed and then
UNPACKMULTI is invoked. Client-specified timeouts are handled in this routine.

5.2. Handling Failures
Two factors complicate the semantics of failures in MultiRPC. First, since multiple connections arc involved,
how does one treat failures on an individual connection? Should the entire call be declared a failure and
aborted at that point? In our design this decision is delegated to the client handler. This routine is called on
each failure and the return code from it specifies whether the call should be terminated. This allows
applications to use a variety of strategies, such as termination on a single failure or termination beyond a
threshold of failures. If an error such as an attempt to use a dead connection is detected during initial
processing of a MultiRPC request, packet transmission is suppressed on that connection.

The second source of complexity arses from the fact that the client handler can terminate a MultiRPC call
before all replies are received. What is the state of the connections on which replies have not been received?
Should these connections be monitored for failure after the call is terminated? How are the outstanding
replies dealt with if they do arrive eventually? Our strategy is to pretend Lhat a response has actually been
received on each of the outstanding connections. After termination of a MultiRPC call MultiiRC increments

6

the sceucc number i:td resets the st ate on each such conn:ction. Respunscs that do c'cntually arrive are
Ci lnorcd. and new failures w ill not be dettctd unt.l the next MultiRPC or simple RPC2 call.

This ahith to terninaite a \tulciRPC cAl prematurel% interacts widi an orthogonal aspect of RPC2 to produce
a r.Le con1dition. Original.. the RPC2 protocol requircd the client to scnd an ackno~sledgcment to the scr'er
wheii a rcpll was :ece,.ed. [he server Would retr,' the reply until it recci%ed the acknowlcdement or tiL1l It
timed LUt. Suppose a client were to terminate a MultRPC call prematurely and then immediately make
another .MultiRPC call. Mlen deadlock could arise on each connection on which a reply was outstanding
wkhen the first call was terminated. The retried replies by the server on that connection ,,ould be ignored by
the client. Similarly, the server would ignore the new reqiest from the client. Only a serxer or client timeout
could '2nd .he deadlhck. This problem would be compounded if the client terminated the second call
prematurely, and then cilimnued Aith further MultiRPC calls. The client could continue indefinitely in this
mode w ithout rcalising that the connection was functionally dead.

Our solution to this problem is to send an explicit negative acknowledgement if a packet with a sequence
number higher than expected is received. This enables both the client and the server to immediately detect
the failure mode described above. Because the RPC2 protocol no longer requires replies to be acknowledged,
this fix is now superfluous. However, we retain it to allow prompt identification of connections that have

Sbeen marked unusable by a server for other reasons such as side-effect failures.

Anothcr possible failure mode relates to the client handler routine. During an excessively long computation
in this routine, the internal buffers in Unix will be filled with incoming replies and further replies will be lost.
This has the effect of increasing retransmissions and hence degrading performance. In addition, logical errors
can arise if the client handler is not reentrant but yields control. This can happen, for instance, if de client
hand!er makes an RPC during its processing. Writing a client handler is thus, in many ways, similar to writing
an interrupt handler in an operating system.

5.3. Evolution

Experience with an initial prototype of MultiRPC led us to make a number of changes pertaining to function
and performance. The changes relating to function have been mentioned in Section 5.2. In this section we
describe the changes that we made to improve the performance of MultiRPC.

Early trials of M'iltiRPC showed a suprisingly large number of retried packets, even when the number of
seners being contacted was relatively small. Careful examination of the code showed that most of these

*packets were not being lost, but were being discarded after receipt. It turned out that the low-level RPC2
code first checked for timed-out events and then checked.for packet arrivals. For a MultiRPC call to many
sites, the total time to transmit all requests exceeded the first retransmission interval. Replies from the first
few servers were discarded because they corresponded to events that had timed out. To fix this problem we
now time out events only after receiving all packets that have arrived.

Another change was made to the same piece of low-level code to reduce the number of LWP context switches.
Rather than yield control on each received packet, the code now yields control only after all available packets
have been received. In MultiRPC this reduces context switches because all these packets are destined for the
same client LWP. This is in contrast to the situation in simple RPC2 calls where the semantics of RPC
guarantees that a client I.WP can be waiting for at most one packet.

A third change addressed the fact that Unix provides only a limited amount of buffering in the kernel for
incoming packets. For a sufficiently large number of servers in a MuitiRPC call, enough replies could arrive

J

O,

'o

. -- ..

-|. '.2'-.nc,

.1.>..... ~. 0 , . .' z . ".TW...

.. to.. . ' ,, .. .:''' . ' n : ,. . . ~ 2.. -p .i .. . u d t..
Re I .'C 1 f ~.2 2g~.cn;4San~eocc re r h

."- , rc. trornm . " zc in t- h" . . ic n :.. m . ,.: cineni 4: -, -backed o;n thlc ncxt. rct,..t trom the
-% , ;,:'t, thu\ ,:'* : '-.,, i:::(., .:" 'c" 4f :a k : 2xchanged, >,: tr . !, <:. ,p trn Isat~o2.,.:[w t ,. ,ork

F ,',o~~.~il :n NIu' ')(C ,,hd" .. -'' .'2r', .A-re 0, .. e d. The rute.! to:ne c -nd ,o :t all the recs :st s th.en

arce ec'eu~Y ti' 9r,. St scr 0):- e. oflod ,,, o meout irt d ':tran, mit their :cpl\. ihis tn:rcised bo~th
,he total r, um 'r r kp s :k "0 e u~ .as well1 ,s the rneror ' ,U~ processor iJUl ,,tl,)f at the client to queue
iod pro-cess 'bhcsc p.jcKCts 1l,. .dd:t:onal nroczs-ng further h~eU ed , chicit ,rod caused it to lose new
epo " ' [- . .flu s le2dj.n., 0 an unr'. whe mode or oCpciation. For this resu,.s, as well] as the failure mode described
n Sction 5.2 ,nd o ther rcj,.,n, :ndepcndent o, \lultiRPC, we ha~e changed the rcliable transmission
Frotccol to ,no lonuger acknowledee replies.

t.'.Thc current implcmnentatuon of \luttiRPC incoroorates all the modifications described in this section and a
,," number of other minor changes. [he pcrformnance measuremcnts describcd in Section 6 were obtained with
"'. this imnplementation.

,.. 6. Performance
"-" The pcrforrmance measure that best charactenses MultiRPC is thc ratio of the elapsed time for using RPC2
.'" teratiely (r), to the elapsed time for using MultiRPC (in). This ratio (r/nr). aS a function of thc number of
. sites contacted (.'i), is the speedup realised by a MulciRPC implcmcntation. Although linear specdup is clearly

* desirable, MlultiRPC can be ',luable even with modest speedup. [n the application which motivated
, ,IultiRPC. for instnce, rapid failure detection was of much greater concern than speedup of proccssing. This
• ".' benefit of using .MuitiRPC exists even if there is no speedup of proccssing.

." In tis section we assess the spcedup of MultiRPC in threc steps. We first present an analytic model in
r ,Section 6.1. '.alidate thi model using data from controlled experiments in Section 6.2.2, and then present, in

~Section 6.2.3. data from large-scale experiments whcre the assuinptions behind our model are violated. The
.,.. raw data for the measurements and the analytic model predictions are found in Appendix Ill, and are

'.

SA

10 t

8

presented graphically in Appendix IV.

6.1. Analytic Model
Our goal in this section is to derive an analytic model that can predict the behaviour of MultiRPC. Although
the simplifying assumptions we make may not strictly hold in practise, they are acceptable for the level of
accuracy we are trying to achieve.

The most important assumption deals with network topology and latency. In most distributed systems, the
actual transit time on the network is a small fraction of the processing time spent in sending and receiving a
packet. Routers or other interconnecting elements on a multi-segment network can, however, increase latency
considerably. For the purposes of our model, we assume that the client and all the servers are on a single-
segment network that has negligible latency.

A second assumption relates to mutual interference and loss of packets. Although MultiRPC is built on
unreliable datagrams, the actual probability of packet loss is quite low, typically below 1 percent. However, as
more servers are contacted, the probability of packet loss increases because of limited buffering capability at
the client. Even if packets are not lost, race conditions between the client and the servers can cause packet
retransmissions. We ignore all these complications and assume that there are no lost or retried packets during
a MultiRPC call.

Finally, we assume that each server takes a constant amount of time to service a request and that this time is
uniform across all servers. This assumption is valid to a first approximation even though the specific nature of
the request, the presence of other processing activity at the servers, and slight differences in hardware
performance can result in nonuniform service times.

A MultiRPC call can be decomposed into the following components:
pack Packing of arguments by client.
cloh Protocol and kernel processing by client to send request.
servoh Protocol and kernel processing by server to receive request and send reply.
ciproc Protocol and kernel processing by client to receive reply
unpack Unpacking of arguments and processing in client handler.

In terms of the MultiRPC implementation described in Section 5.1, pack is the time taken by the routine
MAKEMULTI, cloh corresponds to the time in MULTIRPC and the initial part of SENDPACKETSRELIABLY, ciproc
corresponds to the remainder of SENDPACKETSREUIABLY, and unpack Is the time taken by UNPACKMULTI and
a call to a null client handler routine. Since MultiRPC and simple RPC2 calls are indistinguishable at the
servers, servoh is the same for both iterative RPC2 calls and MultiRPC. This is the total time taken to receive
a request and to send a reply. assuming zero processing time. We include a separate term comptime to
account for the application processing at a server.

The pack component is performed only once, regardless of the number of servers being contacted. The servoh
and comptine components overlap at the servers. Al the other components have to performed once for each
server. In terms of these components, the total time m for a MultiRPC call to n sites can be expressed as

m = pack + (nxcloh) + (servoh + comptime) + (nxclproc) + (nx unpack)

Unfortunately this expression contains an oversimplification that affects the model predictions significantly.
Suppose waittime is the elapsed time between the sending of the last request and the receipt of the first reply
by the client. For a single server, wainine will be the sum of servoh and comptime. For a large enough

N 9

number ofservers,however, the reply from the first server may Ie auilable before the last request is sent out;
in this case waittine is zero.

Assuming that the time to send a packet is sendlime, the expression for ru can be refined as follows:
waitlime = (servoh + compttne)- ((n- 1)xsendtime)
if(waitihne < 0) then waiuune = 0
n=pack + (nxcloh) + waittime + (nxclproc) + (nxunpack)

If a null RPC2 call takes rpcirme, the total time, r, to contact n servers using iterative RPC2 calls is given by
r = nx(rpctime + complime).

The times for the individual components in our implementation were obtained by actual measurement and
are presented in Table 111-2. Using these values in the expressions derived above we can calculate the
quantities r, m and r/m for senver computation times of 10. 20 and 50 milliseconds. These predicted values
are presented in Table 111-6 and shown graphically in Figure IV-4.

Most systems with parallelism initially exhibit linear speedup, then show sublinear speedup, and finally
saturate. Figure IV-4 shows that NiultiRPC conforms to this expected behaviour. However, two detailed
observations are apparent from this graph. First, saturation occurs at surprisingly low levels of speedup.
Second, the level at which speedup saturates and the number of servers at which saturation sets in are both
dependent on the server computation time.

The server computation time is central to MultiRPC because most of the parallelism comes from overlap of
serer computations. The sending of requests and processing of replies at the client are done sequentially.
The realisable speedup depends on how long these operations take in comparison to the time spent at the
server.

We can quantify this reasoning in the following way. Our measurements show that the dominant components
of MultiRPC are the time to send a request and the time to receive a reply. Suppose the sum of these
quantities, called systime, is identical in MultiRPC and RPC2. Further, let the total time spent at a server
(equal to the sum of servoh and comptime) be servtime. Then the MuItiRPC and RPC2 call times to n servers
can be crudely approximated as follows:

m = (nxsystime) + servime
r = (nxsystinhe) + (nxserylime)

I __-.serv lme

r systime + servtime systime
m systie + serim + servtim .

n systime n

Let T -servlime
systime

: Th~'en-rL +_.,_
m T~

+-
n

The above expression clearly shows that the speedup is sensitive to the value of T. In the limit as n tends to

1

10

infinity, tie value of r/rn tends to 1 + T. This accounts for the fact that the saturation value of the speedup is
higher for longer server computation times. Because the times to send and receive a packet dominate systime,
improvcments to the underlying network primitives will improve the maximum speedup obtained with
MultiRPC. Consequently, an improved basic RPC mechanism would result in improved MultiRPC
performance rather than rendering it superfluous.

6.2. Experimental Results
* We performed a series of carefully controlled experiments to confirm our understanding of MultiRPC and to

explore its behaviour when contlicting a large number of servers. We describe our experiments and the
observations from them in the next three sections.

6.2.1. Experimental Environment
The experiments were conducted in an environment of about 500 Sun3, DEC MicroVax, and IBM RT-PC
workstations running the Unix 4.2BSD operating system and attached to the Andrew File System. For
uniformity, we ran our tests only on the IBM RT-PC workstations, with one of the workstations being the
client and the others servers. By designing our tests to require no file accesses or system calls on the servers
we avoided distortions of our measurements by distributed file system access.

The topology of the network connecting these workstations is shown in Appendix II. Although physically
compact2 , there is considerable complexity in the network structure. There are about a dozen Ethernet and
IBM Token Ring subnets connected to each other directly or via optic fibre links. Active computing
elements, called routers, perform the appropriate forwarding or filtering of packets between these subnets. In
addition to the Andrew workstations, many standalone workstations and mainframe computers are also on
this network.

The scale and complexity of the network introduced serious problems in controlling our experiments. We
had to be on guard against extraneous network activity loading the network and the routers. We also had to
contend with the fact that closely-spaced replies to a MultiRPC call from a large number of servers could
overload the routers and affect our measurements.

To address these problems we separated our experiments into two classes. The tests for model validation,
discussed in Section 6.2.2, were run entirely on workstations located on a single subnet. For these tests we
were able to ensure that there was no other network activity. The presence of routers was irrelevant since the
client and all the servers were on the same subnet. Since there were only 20 workstations on this subnet, our

*O model validation is restricted to this range.

The tests discussed in Section 6.2.3 to explore the large-scale performance of MultiRPC could not be
controlled so well. To include more than 20 servers our tests had to span multiple subnets. We minimised the
effects of extraneous network activity by running our experiments in the early hours of the morning, when the
network was least active. Preliminary tests confirmed that this consistently produced smaller variances in our
measurements than tests run at any other period of the day.

We simulated computation on the servers by delaying the reply to a request by a specified amount of time.
Unfortunately, the clock resolution of 16 milliseconds on the RT-PCs was inadequate for the range of
computation times of interest to us. We therefore had to resort to a timing loop to achieve delays of 10, 20

The entire CMU campus is only about one square kilometer i dize.

11

and 50 milliseconds in our tests. The clock resolution was also inadequate for measuring the elapsed time of
individual calls at the client. To overcome this, we timed many iterations of each call and used tie average.

6.2.2. Validation
The worst performance of MultiRPC, relative to RPC2, occurs when a single site is contacted. In this
situation, the additional complexity of a MultiRPC call is not amortiscd over many connections. Table 111-1
compares the elapsed times to contact a single site using RPC2 and MultiRPC, for zero server computation
time. The table shows that the difference in times is negligible. Further, the RPC2 time presented in the
table is no worse than the time observed on an earlier version of RPC2 that lacked MultiRPC support. Our
design criterion of not slowing down simple RPCs has thus been met.

To compute the model predictions we need to know the times taken by individual components of MutiRPC.
These values, obtained by standalone measurements of MultiRPC, are presented in Table 111-2. By
substituting these values in the expressions derived in Section 6.1 we obtain the model predictions shown in
Table 111-6 and Figure IV-4.

Figures IV-5, IV-6 and IV-7 compare the predictions of the model to our measurements. The model
consistcntly predicts slightly better performance than we actually observe, but the fit is suprisingly good
considering the simplicity of the model. For the reasons discussed earlier we were unable to investigate the
validity of the model beyond 20 servers.

6.2.3. Large Scale Effects
Since the original motivation for MuItiRPC involved a scenario with a large number of workstations
distributed over the entire CMU campus, we were curious to see just how well MultiRPC behaves in such an
environment. Our analytical model is not valid in this situation because of the presence of routers and
extraneous network traffic. These factors affect both RPC2 and MultiRPC. Their effects show up as
anomalies in the average values of de measured quantities, and as high associated variances.

Table 111-3 and Figure IV-1 present our observations for server computation times of 10, 20 and 50
milliseconds. The behaviour below about 25 servers is in accordance with our model. Beyond this the
speedup drops rather than increasing or remaining constant. Detailed examination of the data revealed an
hicrease in the number of retried packets beyond about 25 servers. Below 25 servers, retries never comprised
more than 0.4% of the total packets sent in a MuItiRPC test. In fact, for those configurations there were often
no retried packets at all. Beyond 25 servers the number of retried packets increased, and sometimes
accounted for as much as 25 percent of the total traffic in configurations beyond 50 servers.

The measurements described above were performed with server computation times that were constants. We
conjectured that one of the main reasons for poor behaviour at large scale was the overloading of routers due
to simultaneous arrival of replies from many servers. Real server computations tend not to be constant. We
therefore repeated the experiments with computation times normally distributed, with a standard deviation
that was 10% of the mean. Table 111-4 and Figure IV-2 show the corresponding results. We also repeated the
experiments with an exponentially distributed service time, to provide validation data for a stochastic model
that might be built in the future. This data is shown in Table 111-5 and Figure IV-3. Unfortunately, as the
results from these experiments show, the aberrations in performance at large scale do not vanish when using a
non-constant service time distribution.

Although there is a decline in observed speedup in the large scale tests, it must be emphasised that MultiRPC
performance is always better than iterative RPC2 performance. Further, we encountered no functional
problems in using MultiRPC up to 100 servers, These facts give us confidence in the value of MultiRPC as a

12

basic component of large distributed systems.

7. Related Work
In this section we look at a number of parallel RPC mechanisms with a view to placing the design of
MultiRPC in perspective. We make no attempt to be exhaustive in our examples or to be complete in our
descriptions. Rather, our goal is to examine these systems in a manner that highlights their similarities and
differences with respect to MultiRPC.

Work in the area of parallel network access has typically focused on broadcast or multicast protocols. Two
examples cf such work are the Sun Microsystems' Broadcast RPC (Sun-BR PC) [181, and Group Interprocess
Communication in the V Kernel (V-GIPC) [3].

Sun-BRPC depends upon IP-level broadcast to communicate with multiple sites. Servers must register
themselves in advance with a central port in order to be accessible via the broadcast facility. This is in contrast
to MultiRPC where no explicit actions need be taken by the server; existing servers do not have to be
modified, recompiled nor rclinked. Like MultiRPC, Sun-BRPC provides for a client handler routine and an
overall client-specified timeout. However it does not provide the same correctness guarantees and error
reporting as MuItiRPC.

V-GIPC uses the Ethernet multicast protocol as its basis and defines host groups as message addresses. Each
request is multicast and it is up to each host to recognise those group addresses for which it has local processes
as members. Reliable communication is not an objective of V-GIPC, even though its designers report that
lost responses due to simultaneous arrival of packets are common. Another difference is that there is no
notion of a client handler in V-GIPC. A client is blocked only until the first response is received; further
responses have to be explicitly gathered. When another call is made, the previous call is implicitly terminated
and further responses to it are discarded.

Neither Sun-BRPC nor V-GIPC allows long server computations at all sites in a parallel call while providing
timely notification of site or network failures. A sufficiently long computation would simply cause a timeout.
The MultiRPC retransmission protocol addresses this issue and allows the client to distingush between a long
computation and permanent communication failure.

There are also parallel RPC systems which do not.depend on broadcast nor multicast. One such system is
Circus [4. 5], which focuses on achieving high availability by using parallel RPC as a vehicle for replication.
Circus is built on top of the DARPA IP/UDP protocol and is unique in that it supports many-to-many
communication rather than one-to-many. It provides for a fixed set of routines called collators, one of which
must be specified by the client when making a call. Collators perform a function similar to the MuitiRPC
client handler routine, but differ in that they do not allow a call to be terminated prematurely. Like
MultiRPC, Circus uses probe packets to distinguish between long server computations and permanent
communication failure. Many problems addressed by Circus, such as orphan detection and exactly-once

@6 semantics in the presence of failures, are unique to its intended application.

The Gemini parallel RPC mechanism [2, 111 is built on the reliable IP/TCP byte stream protocol [8], that
subsumes the retransmission, timeout, acknowledgement and probe functions of RPC. It is similar to
MultiRPC in that it requires no multicast or broadcast support. Unlike MuitiRPC, a distinct Unix process is
created on a server for each client. The stub compiler for Gemini accepts interface specification in C rather
than defining a separate interface language. The equivalent of the MultiRPC client handler routine is a
language construct called a result statement. This is a compound statement in C that syntactically appears

[3

after a parallel remote procedure call. This body of code is executed exactly once for each reply and the
execution can terminate the entire call prematurely.

8. Conclusion
The centril message of this paper is that it is possible to build an efficient and easy to use parallel invocation
mechanism whose semantics is a natural extension of the remote procedure call paradigm. We have derived
an analytic model of this mechanism and shown that its predicted performance closely matches the measured
performance of our implementation. Asymptotic analysis of this model indicates that improvements to the
underlying transmission primitives would further strengthen the case for using MuLtiRPC in preference to
iterative RPCs. We have demonstrated experimentally that the mechanism works successfully for up to 1O0
servers in a single call, executing in a complex network environment with diverse transmission media and
interconnecting elemcits. Comparison with other parallel invocation mechanisms shows that MultiRPC is
unique in its overall design, although some of the individual concepts used in it may be found elsewhere.

There are a number of ways in which the work reported here may be extended. First, MultiRPC provides
parallelism at the programming interface but does not require multicast capability in any of the lower levels of
the networking software. Suppose, however, multicast were available. How could MultiRPC use it? What
would its performance behaviour be then? Our view is that multicast is a performance enhancement rather
than a fundamental programming primitive. Preliminary work indicates that if the programmer is required to
explicitly group connections, the semantics of MultiRPC can be preserved while using multicast internally.
An interesting security question arises in this context. How does one support site-specific encryption on
multicast packets? Our approach is to use the underlying secure RPC2 connections as key distribution
channels for internally generated group-specific keys. We will report on our experience with this approach
and further details on the use of multicast in a later paper.

Another potential improvement to MultiRPC involves ARGs. RP2Gen does not take advantage of repeated
argument types when it generates ARGs; it creates a new ARG for each parameter of each remote operation.
For recursive structure arguments this can consume a significant amount of storage. Since structure
arguments are defined in the subsystem specification file, and hence known to RP2Gen, it should be possible
to share ARGs.

Finally, using software in a variety of applications often results in unexpected lessons and refinements. It is
impossible to predict in advance what such changes might be in the context of MuitiRPC. However, we are
confident that MuitiRPC and mechanisms similar to it will prove to be an important building block in
distributed systems.

Acknowledgements
We wish to thank Tom Holodnik of the Data Communications Group at Carnegie Mellon University for
permission to use Figure 1I-1. We would, also like to express our appreciation to Jay Kistler, Daniel
Duchamp, Bradley White and Eric Cooper for their careful reading of this paper and their many useful
comments.

.

14

I. An Example
ihis appendix presents a brief example in order to make some of the previous discussion more concrete.
Although this example is contrived, it is adequate to illustrate the structure of a client and server that
communicate '.ia RPC2, and the changes that must be made to the client to use MultiRPC.

The subsystem designer defines a subsystem, chooses a name for it, and writes the specifications in the file
4subsystemnane).rpc2. This file is submitted to RP2Gen, which generates client and server stubs and a header
file. RP2Gen names its generated files using the file name of de .rpc2 file with the appropriate suffix.

Figure I-1 presents the specification of the subsystem example in the file example.rpc2. RP2Gcn interprets
this specification and produces a client stub in the file example.client.c, a server stub in example.server.c and a
header file example.h (shown in Figure 1-2). This subsystem is composed of two operations, double it and
irtple.it. These procedures both take a call by value-result parameter, te~i,al. containing both the integer to be
operated on and the result returned by the server.

Once the interface has been specified, the subsystem implementor is responsible for exporting the subsystem
and writing the server main loop and the bodies of the procedures to perform the server operations. A client
wishing to use this server must first bind to it and then perform an RPC on that connection. Figures 1-3 and
1-4 illustrate the client and server code. We wish to emphasise that this code is devoid of any considerations
relating to MultiRPC.

Now consider extending this example to contact multiple servers using MultiRPC. The example.rpc2 file and
the server code remain exactly the same. Argument Descriptor Structures (ARGs), used by MultiRPC to
marshall and unmarshall arguments, are already present in the client stub file; pointers to these structures are
defined in the example.h file. Only die client code has to be modified, as shown in Figures 1-5 and 1-6.

From the client's perspective, a MultiRPC call is slightly different from a simple RPC2 call. The procedure
invocation no longer has the syntax of a local procedure call. Instead, the single library routine MAKEMULTI is
used to access the runtime system routine MULTIRPC. The client must allocate all necessary parameter
storage. IN arguments are simply supplied as for any procedure call, but for OUT and IN-OUT parameters
arguments arrays of pointers to the appropriate types must be supplied to the MAKEMULTI routine. The return
arguments from each of the servers will be placed in the appropriate elements of the arrays.

The client is also responsible for supplying a handler routine for any server operation which is used in a
MultiRPC call. The handler routine is called by MultiRPC as each individual server response arrives,
providing an opportunity to perform incremental bookkeeping and analysis. The" return code- from the
handler gives the client control over the continuation or termination of the MultiRPC call.

RP2Gn c wlfcadon file for simpe subsoem

Server Prefix "srv: mg aser operations to avoid ambiguity

Subsystem "Example":

doublejit(IN OUT RPC2_lnteper) tustval):
trtplet.i(IN OUr RPC2lnteser) testval):

Figure II: exainplerpc2 specification file

4

.hfile produced by RP2GEN
Input file: example.rpc2

Atinclude 'rpc2.h'
#include "seh"

Op codes and definitions

#dcfine double it OP I
extern ARG (Iouble..it_.ARGS[1:
define double-it-PTR double-it-ARGS

define triplejitOP 2
e.xtern ARG trple.iL..ARGS(]:;
#dcine triple~itmIR tripleJLtARGS

Figure 1-2: The RP2en-gecrated header file exarnple.h

Include relevant header files

mnainO

int testyal, ap;
RPC2.Ynndle cid:

Perform L. WP and RPC2 Initialization

Establish connections to server using RPC2..Blnd
RPC2_Bind(Bind arguments, &cid):

while (TRUF)
I
printRU\n Double [=11 or Triple C=2] (type 0 to quit)?)
scanf("%d". op);
if (op = = 0)

break.
printl(Number?")

Perform RPC2 call on connection eid
if (op = = 1) dloublejit(cid. testval);
else uiple..it(cid. tcstv4
printl(**result = %d\n". testval);

RPC2_Unbind(cid); Terminate connection with serw'e

Figure 1-3: A Simple RPC2 Client

16

Include relevant header files

maino

RPC22acketBuffer Oreqbuffer
RPC2-Handle cid;

Perform L WP and R PC initialization

Set filter to accept requests on new or existing connections

% Enter server loop
while(TRUE)

A wait a Client request:7
RPC2_GetRcqucst(&cid. &raqbuffer, Other Arguments)
servEecuteRequesqcid, reqbuffer) Routine is generated by RP2Gen

Bodies of server procedures
long scrv~doublejt(cid. testval)

RPC2Jl [andle cid;
RpIC2_jnteger Otestval;

Otestval = (testval) 0 2;
return(RPC2.SUCCESS))*;
I

long serv..triple-it(cid. testval)
RPC2_andle cid;
RpCLjnteger Otestval.

Otestval = (testval) 0 3:
retum(RPC2..SLCCESS);

Figure 1-4: A Simple RPC2 Server

17

Include relevant header files
define I110WMANY 3
#define WAITFOR 2
long HandleDoubleO:

* long flandleResu Ito;
* long returns:

mnaino

int testval(l OWMANY], op; Can use static or dynamic allocation
RPC2_flancilc cid[H0WM.ANY];

Perform L. WP and RPC2 Initialization

Establish connections to servers
for(count = 0:. count< HOWMANY; count +~ +)

ret = RPC2_Bind(Bind arguments, &cid[count]);
testval(countj = (int)mnalloc(sizeof~int)); allocate space for arguments
I

while (TRUE)
I
printft"\nDouble (=1] or Triple (=21 (type 0 to quit)?)

-~ scanIR"%d", op).
if (op =0) break;
printW'\n Numnber?)

'escanf('%d", *testval(01); IN argument goes in 1st array slot

Make theAVYI1R2PC call
returns = 0:
bzero(tcstval, HOWMANYsizcoI~int)); in itialize results
if (op = = 1)
MakeMulti(doubleitOP. doubleitTR, HOWMANY. cid.

HandleDouble. NULL, testval);
else MakeMulti(triplcjt.OP, tripleit-PTR, HOWM ANY. cid..

HandleTriple. NULL. testval):
for (count = 0: count (HOWMANY; count+ +)

printR"result[%d] = %d\n". count. testval~countD;
I

for (count = 0: count (HOWMANY; count+ +4)
RPC2.Unbind(cid~countD;

printl" Bye ...\n)

Figure 1-5: Client using MultiRPC

18

long I landleDoubl(HowMany. cidarray. host, rpcval. testval)

RPC2 Integer HowMany, host, rpcval. *testvalo:
RPC2 Handle cidarrayO;

if (rpcval RPC2..SUCCFSS)
- C.printRliandleDouble: rpcval = Tod\n", rpcval);

M +- returns = \AITFOR) return -1. Terminate the .1 ultiR PC call
return(0); Continue accepting server responses
I

long Han dleTrnple(Ilow.Many, cidarray, host. rpcval. testval)
RPC2 Integer HowMany, host, rpcval. Otestvalfl;
RPC2 Handle cdclarrayfl;

if (rpcval =RPC2.SLCCESS)

printt HandleTriplc: rpcval = 9od\n'. rpcval);
if(-+ + returns ==WAITFOR) return -1; Terminate the ,i.~RPC call
return(0); Continue accepting server responses

Figure 1-6: MultiRPC Client Handlcr Routines

19

11. Network Topology

Carnegie Mellon Internet
April 10, 1987

aAdministrative Sys. LO

ITC R3Porter Hall

FTC CFA

R25 TC Fle~eversHunt

L~us~erWarner

R26 R22BOM

Skibo Scalre &
& SUP R28McGill

HH R24CFA

Wean

GSWest0 Cluse

Rol R2

ECEdPub
As M l o

ABke Pu Toke Rings M okn
EP AT9 220.254o~e

Cigur Ili anei elo ewrkTplg

Phsis 5519,S

1""9a
.K

7

20

111. Tables

MIRPC [IC R______ / N/M

29.00 27 80 0.96

* Figures in parenthesis arc sianda~rd deviations.

Table 111-i: %leaSUrcd Times for null RPC2 and MultiRPC Calls (in ins)

pack ckoh Seryoh ciproc unpack sn
L I I I I 1 d

.50.56 5.98 13.69 3.93 0.20 5.15

'rable 111-2: Average Times for Individual Components of MultiRPC (in ins)

6M00hM

21

lsrncrsi 10) rns Computation 2 0 inis Comuputation 50 ms Comiputation

NIP RITZ2 RIMl NItIC lP('2 R/Ml \IIP(R11(Z Rl~

1 39 30 18 30 097 4q 0 47 30 095 Al 10 7 9

10173) (1,13) (108) (134) A6 37) 6 11~) 09

2 4 5X '650 07 ~ 0 96 10 1-0O S5A ' 35 15
*~~4 G v~S) IO 4 (21) I' 0) (743)

5 66 25 191 55 289 6 24240 3 17 IN 35 31120 3 75
(107) Q29 (094) (408) '63) (3 52)

7 79SO 268-0 3 37 89 C0 336 25 374 120 95 54975 455
tl 15) (3 77) (10?) (3,35) (8.68) (6.56)

10 10790 385 10 3 57 11055 482.05 4,36 13950 784.S0 5.63
(1.21) (11.50) (110) (7,78) (7.90) (9.57)

13 140 '0 50080 3,57 139 95 627 35 4.48 161.40 1046.30 6.4.
(07) '951) (100) (7.74) (7.24) (37,60)

15 161 30 579 10 3.59 16] 35 725.95 4.50 175 20 117925 6.73
(1.08) (12.92) (1 23) (9.20) (9.00) (14,02)

17 182.40 654.10 3.59 183.35 820.05 4.47 188.75 1337.50 7.09
(0.99) (10.47) (1.50) (8.31) (10.07) (12.52)

19 .204 10 740.85 3.63 205.60 915.55 4.45 209.35 1496.95 7.15
(1.07) (22.37) (2.52) (55.51) (1V .62) (17 00)

50 766.10 2744.00 3.58 766.50 3130.90 4.08 796.90 4912.50 6.16
(26.30) (73.36) (20.28) (59.34) (26.21) (255.90)

Il 75 01225.20 4985.53 4.07 1331.20 7707.90 5.79
(114.13) (86.52) (433.06) (245.59)

100 1705.90 6017.20 3.52 1780.40 6844.00 3.84 1429.50 9947.00 6.96

(70) (22209) (136.46) (246.76) (217.27) (212.63)

All times are in milliseconds. Figures in parentheses are standard deviaitions. A subset of this data is graphically
presented Figurc IV-1 and is also used in Figures IV-5, IV-6 and ZV*7. I-or configurations tip to 20 servers, all machines
were located on a single isolated token ring. Configurations involving more than 20 servers spanned multiple network
segments. Each data point was obtained from 10 trials.

Table 111-3: Measured Call Times for Constant Server Computation Times

'pf

22

Servers 10 ms Computation 20 mis Computation 5) ins Computation

MRPC RPC2 R/.M .mRPC RPC2 R/M1j MRPC RPC2 RIM

1 39.32 37.75 1.02 50.40 47.60 0.94 77.96 78.40 1.01
(1.11) (0.95) (6.42) (1.00) (7.92) (12.28)

2 44.92 75.92 1.69 5956 9988 1.68 85.28 155.96 1.83
(1.29) (1.58) (6.68) (10.41) (7.74) (12.06)

5 70.16 208.52 2.97 79.32 261.68 3.30 108,36 414.24 3.82
(3.25) (3.74) (2.98) (5.75) (12.48) (31.02)

10 112.55 478.10 4.25 112.08 530.00 4.73 143.40 824.76 5.75
(3.97) (16.40) (9.15) (17.95) (10.01) (19.72)

15 162.75 747.75 4.59 148.16 783.36 5.29 185.55 1270.85 6.85
(18.40) (21.09) (2.19) (20.76) (14.50) (30.83)

19 224.00 1698.70 7.58
(25.12) (42.18)

20 208.05 956.55 4.60 197.44 1065.76 5.40

(7.10) (35.47) (2.16) (21.33)

25 247.48 1153.52 4.66 248.96 1430.00 5.74 258.04 2179.00 8.44
(1.19) (18.49) (5.14) (93.75) (13.50) (47.62)

50 780.00 2933.10 3.76 77179 3266.20 4.23 838.20 4901.70 5.85
(34.57) (124.90) (8.56) (56.84) (34.70) (186.16)

75 1474.30 4579.60 3.12 1238.20 5351.07 4.32 1581.50 7690.20 4.86
(103.62) (57.35) (177.80) (239.53) (429.48) (277.17)

100 1715.89 6120.10 3.57 1637.30 7282.70 4.45 1943.60 10082.40 5.19
(28.35) (61.95) (12199) (403.44) (1965.90) (248.46)

All times are in milliseconds. Figures in parentheses are standard deviations. This data was obtained from servers
distributed over many network segments. A subset of this data is graphically presented in Figure IV-2. Each data point
was obtained from 10 trials.

Table III-4: Measured Call Times with Normally Distributed Server Computation Times

23

Scners 10 ins ComputItion .0 Ins Computalion 541 mis Cwipulaio

.NLRPC RPC2 RIMt NlRPC RKC2 R/ MR PC RV(2 IUJ'I

1 37 68 36 80 098 44% 4464 099 9148 5 0 0 93
(3.98) (6 32) (5 14) (542) 55 27) (51 35)

2 4563 72 80 153 62,94 91% 146 1,114 4 1 1'16 4 3
(4 14) (5 35) (7 7 1) (8 97) t13 78) C3 812)

5 72.92 20648 2,83 94 L2 25064 266 15W)2 395 52 Z b2
(4.15) (14.25) (701) (27 30) (4h 5!) (120 55)

10 111.20 43965 3.95 12396 52196 421 227% 788 36 346
(117) (22.78) (7 71) (8040) (9285) (11591)

15 162.90 626.70 3.85 16920 906.55 536 24980 1203 56 482
(1.52) (53.22) (12.97) (82.43) (60 33) (237 48)

19 211.95 843.95 3.98
(12.15) (5443)

20 21005 1182.65 563 28890 1654 0 573
1]3.55.) (108,17) (72 33) (232.17)

25 25660 1381.30 5 38 30492 217548 7.13
(20.49) (8.92) (78 89) (307 59)

50 768.20 2835.90 3.69 78705 3166.40 4.02 512.60 4559 30 5.61
(10.75) (170.28) (14.77) (L46.35) (GLO 29) (282 20)

75 1358.11 4390.60 3.23 1227.73 5272.80 4.29 1015 63 7543.70 7.43
(139.52) (94.70) (148.51) (462.43) (38 86) (521.72)

100 1675.63 6074.90 3.62 1586.40 7335.90 4.62 151890 1072490 706
(39.54) (118.74) (52.27) (419.85) (212.51) (2397.54)

All fmes are in mullisoods. Figures in p enthcses are vmdard deviations. This dava was obaned from servers
distributed over many network segments A subset of this data is graphcaly presented in Figure IV- 3. Each da point
was ob ined from 10 trials.

Table 111-5: Measured Call Times with Exponenfia!lv Distributed Server Computation Times

il I I

24

Servers 10 ms Computation 20 ms Computation 50 ms Computation

N1IIC RPC2 RIM MIRPC RI'C2 R/M MRPC RIC j RIM

1 34.36 37.80 1.10 44.36 47.80 1.08 74.36 77.80 1.05

2 3932 75.60 1.92 49.32 95.60 1.94 79.32 155.60 1.96

5 54 20 189.00 3.49 64.20 239.00 3.72 94.20 389.00 4.13

7 71.33 264.60 3.71 74.12 334.60 4.51 104.12 544.60 5.23

10 101 66 378.00 3.72 101.66 478.00 4.70 119.00 778.00 6.54

13 131.99 491.40 3.72 131.99 621.40 4.71 133.88 1011.40 7.55

15 152.21 567.00 3.73 152.21 717.00 4.71 15221 1167.00 7.67

17 172.43 642.60 3.73 172.43 812.60 4.71 172.43 1322.60 7.67

19 192.65 718.20 3.73 192.65 908.20 4.71 192.65 1478.20 7.67

20 202.76 756.00 3.73 202.76 956.00 4.71 20276 1556.00 7.67

25 253.31 945.00 3.73 253.31 1195.00 4.72 253.31 1945.00 7.68

, 50 506.06 1890.00 3.73 506.06 2390.00 4.72 506.06 3890.00 7.69

75 758.81 2835.00 3.74 758.81 3585.00 4.72 758.81 5835.00 7.69

100 101156 3780.00 3.74 1011.56 4780.00 4.73 1011.56 7780.00 7.69

All times are in milliwconds. The server computation time is assumed constant. This data is raphically presented in
Figure IV-4, and used in Figures IV-5. IV-6 and IV-7.

Table 111-6: Predicted Performance from Analytic Model

25

IV. Graphs

26

10, "-. AO............ .
t41

7L

01 70 2 3 / o s 0 so w 100rioi

:"~ . 0

0, A . ***..

SN /• -.-.... -__ -.-.
4- -,. .. ---.

4WAi4gLjR OP Sffflt%
*AA ;UEP PzjPO&A/Cex(ta/%TAA7' 4CA(P4IrA'rlA/ 77M&Z)

The data in this &raph is obtained from Table 11-3.

Figure IV-1: Mcasured Performance for Constant Server Computation Time

II III I

27

/V A0 ,opu~i~
2 /0 AO COWPUrAT'oAI
20 M C M ' TPrAO/WMo , /Al C * P14r"A r/OM

0.

e T I
....

LaiT o 0.

AA

S* 4 p I" - . ..

I 1 ... -

0 10 20 30 40 so0 s 70 s0 so 10
N4'AfA~rK OP' ISZAVrR5

MECAS'/,qEP tPZAOR Ae (AeR4L4 44A &rw rML,)

The data in this graph is obtained from Table 1114.

Figure IV-2: Measured Performance for Normal Server Computation Time

28

to o /0 MA, COMAPUrA rl/o
,0 Mf *COM P 'A rION
o 5o M* W COMZPrArOA

9

t%5 ,.. ,- ..
'.0 %8. . -. .

C 8

IN

0 10 20 30 40 so 70o9

ANIM44t OF SMVERS

The dmt in this graph is obtained from TOWl 111-5.

Figure IV-3: Measured Performance for Exponential Server Computation Time

29

10 13 10 hM,! COM Pt4A 770W
&zo Mf CeOMf~w-r47OA1

0M5 A &OMrAflOP

S7

0 4 6to1 1.2 14 to is 20

The dmw m t raph m obtaimed from Table UPC

Fiwe IV-4: Predicted Performance ffrm Model (Constant Compuation Ti-me)

30

PRE D/CTLO

NAM

tPREpCrZPV V~rRS5 MZ,4&IRP PWFAAfoqWZ
(/0 *4.5 COMN.e7AroI/W TIME)

The Predicted data is from Table Ill-. The masured d121a is frm Table (11-3.

Figure IV-5: Comparison of Predicted and Measured Performance (10 ms Computation)

= 31

4.-"

A A

* -*-*--A4EAURED

-4" PREDICTED
-4

0a 4 6 i 10 1x 14 10 is 20
NUMUrR Or s5rXWSZ#PRtZ p CIe-rE VEJS M ,£E,4SIUP..P PLRFORM, feE_

(20 AJ COmPS/.,4r/OM I/ME)

The predicted data is from Table 111-6. The measured data is from Table 111-3.

Figure IV-6: Comparison of Predicted and Measured Performancc (20 ms Computation)

392

4

...

1WAC:7Z:D

"°A

(00 A°" a 1* 178 O

IRj7P RU MAUZ PORr./4I/t

'Te predicted data Is from Table 1116. 'The measured data is fom Table 111-3.

Figure IV-7: Comparison of Predicted and Measured Performance (50 ms Computation)

--

~References

I [1] Birrell, A.D. and Nelson, B.J.
~Implemnenting Remote Procedure Calls.

,s,"-,401 Transactions on Computer Systems (1): 39-59, February, 1984.

,,,[21 BUrkhard, Walter A., MNartin, Bruce E. and Paris, Jchan-Francois.
The Gemini Replicated File System Trest-bed.

--] In Proceedings of the Third International Conference on Data Engineering (forthcoming). 1987.

,, [31 Cheriton, David R., and Zwaenepocl, Willy.
, Distributed Process Groups in die V Kernel.
7 ACMf Transactions on Computer Systems 2(2):77-107, May, 1985.

[41 Eric C. Cooper.
, Circus: AI Replicated Procedure Call Facility.

Technical Report UCB/CSD 85/196, PROGRES Report No. 84.12, Computer Science Division,
~University of California, January, 1985,

: [5) Cooper, Eric C.
Ii Replicated Distributed Programs.

~In Proceedings of the Tenth ACM Symposiumi on Operating System Principles. December, 1985.

." .[6) Defense Advanced Research Projects Agency, Information Processing Techniques Office.

".,r."R I.C 79 1: In ternet Program Protocol Specification
M h .September 1981.

[71 Defense Advanced Research Projects Agency, Information Processing Techniques Office.
"d ",? RFC 768: User Datagramn Protocol Specification
""--"September 1981.

?? "[81 J. Postel, ed.
.'-' RFC 793: Transmission Control Protocol - DARPA Internet Program Protocol Specification
-J] September 1981.

[9] Herlihy, M.

~A Quorum-Consensus Replication Method for Abstract Data.Types.
AC M Transactions on Computer Systems 4(l):32-53, February, 1986.

[10] Jones, M.B., Rashid, R.F., and Thompson, M.
: ' MatchMaker: An interprocess specification language.
."-. In Proceedings of the ACM Conference on Principles of Programming Languages. January, 1985.

"" [111 Bruce Martin.
-: - Parallel Remote Procedure Call Language Reference and User's Guide

Computer Systems Research Group, University of California, San Diego, 1986.

(12] Morris, J.H.. Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S.H., and Smith, F.D.
Andrew: A Distributed Personal Computing Environment.
Communications of the ACMI 29(3): 184-201, March. 1986.

(131 Jonathan Rosenberg, Larry Raper, David Nichols, M. Satyanarayanan.
L WP Manual

_ Information TehooyCneCMU-ITrC-037, 1985.

34

[141 Satyanarayanan, M.. Howard. J.11., Nichols, D.N., Sidebotham, R.N., Spector, A.Z. and West, M.J.
The ITC Distributed File Sstcmn: Principles and Design.
In Proceedings of the Tenth ,1CM Symposiuw on Operating S)stem Principles. Dccembcr, 1985.

[151 M.Satyanarayanan.
RPC2 User .anual
Information Technology Center, CMU-ITC-038, 1986.

[161 M. Satyanarayanan.
RPC2: A Communication Mcchanism for Large-Scale Distributed Systems.
Manuscript in preparation, 1986.

[171 Spector, A.Z.
Performing remote operations ef'fliciently on a local computer network.
Conmunications of the A/CM 25(4):246-260, April, 1982.

[181 Sun Microsystems Inc.
Networking on the Sun Workstation
15 May 1985.

.5.

.1

4!

4-4D

FRO.'1

